Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 190(3): 1731-1746, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35951755

RESUMO

In plant stems, secondary vascular development is established through the differentiation of cylindrical vascular cambium, producing secondary xylem (wood) and phloem (bast), which have economic importance. However, there is a dearth of knowledge on the genetic mechanism underlying this process. NAC with Transmembrane Motif 1-like transcription factor 9 (NTL9) plays a central role in abiotic and immune signaling responses. Here, we investigated the role of NTL9 in vascular cambium development in Arabidopsis (Arabidopsis thaliana) inflorescence stems by identifying and characterizing an Arabidopsis phloem circular-timing (pct) mutant. The pct mutant exhibited enhanced vascular cambium formation following secondary phloem production. In the pct mutant, although normal organization in vascular bundles was maintained, vascular cambium differentiation occurred at an early stage of stem development, which was associated with increased expression of cambium-/phloem-related genes and enhanced cambium activity. The pct mutant stem phenotype was caused by a recessive frameshift mutation that disrupts the transmembrane (TM) domain of NTL9. Our results indicate that NTL9 functions as a negative regulator of cambial activity and has a suppressive role in developmental transition to the secondary growth phase in stem vasculature, which is necessary for its precise TM domain-mediated regulation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Câmbio/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xilema/genética , Xilema/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Plant J ; 102(5): 1042-1057, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31925982

RESUMO

Plant cells have acquired chloroplasts (plastids) with a unique genome (ptDNA), which developed during the evolution of endosymbiosis. The gene content and genome structure of ptDNAs in land plants are considerably stable, although those of algal ptDNAs are highly varied. Plant cells seem, therefore, to be intolerant of any structural or organizational changes in the ptDNA. Genome rearrangement functions as a driver of genomic evolutionary divergence. Here, we aimed to create various types of rearrangements in the ptDNA of Arabidopsis genomes using plastid-targeted forms of restriction endonucleases (pREs). Arabidopsis plants expressing each of the three specific pREs, i.e., pTaqI, pHinP1I, and pMseI, were generated; they showed the leaf variegation phenotypes associated with impaired chloroplast development. We confirmed that these pREs caused double-stranded breaks (DSB) at their recognition sites in ptDNAs. Genome-wide analysis of ptDNAs revealed that the transgenic lines exhibited a large number of rearrangements such as inversions and deletions/duplications, which were dominantly repaired by microhomology-mediated recombination and microhomology-mediated end-joining, and less by non-homologous end-joining. Notably, pHinP1I, which recognized a small number of sites in ptDNA, induced drastic structural changes, including regional copy number variations throughout ptDNAs. In contrast, the transient expression of either pTaqI or pMseI, whose recognition site numbers were relatively larger, resulted in small-scale changes at the whole genome level. These results indicated that DSB frequencies and their distribution are major determinants in shaping ptDNAs.


Assuntos
Enzimas de Restrição do DNA/metabolismo , Plastídeos/genética , Variações do Número de Cópias de DNA/genética , Variações do Número de Cópias de DNA/fisiologia , Enzimas de Restrição do DNA/genética , Evolução Molecular , Genoma de Cloroplastos/genética , Genomas de Plastídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...